
White Paper:
Data-Centric Serverless Computing with LambdaStoRe

Kai Mast ∗

February 2, 2025

Abstract

LambdaStoRe is a new serverless platform that
embeds computation into the storage layer usingWe-
bAssembly. It implements an object-oriented model,
where functions are bundled with their associated
data and execute directly where the data resides.
This co-location allows to provide better semantics
and higher performance than the state-of-the art.

This paper outlines the design of LambdaStoRe
and makes the three contributions. First, it de-
scribes the architecture of a scalable object-oriented
database that co-locates storage and execution.
Second, the paper explains a novel mechanism to
provide serializabilty for serverless workflows while
maintaining high performance. Finally, we cover
how to make such a system workload-agnostic by
dynamically adjusting object granularity.

Evaluation shows that LambdaStoRe out-
performs conventional serverless designs while
providing stronger consistency guarantees, lower
latencies, and better fault tolerance. We also demon-
strate that this design uses less resources, enabling
cloud computing at much lower cost.

1 Introduction

Serverless computing promises to enable the rapid
development and deployment of applications and ser-
vices [11, 9]. The serverless approach is attractive for
many reasons, as one can entirely avoid purchasing,
provisioning, and managing backend machines; rather,
one simply develops the necessary application logic,
and the infrastructure handles execution, automatically
scaling up and down as needed. The market for server-
less is already large (nearly $8B), and some project it to
exceed $20B by the end of 2026 [27]. As one CEO said,
“Serverless has demonstrated that it is the operational
model of the future.” [13]

∗Work on this project started at UW Madison. Please see the
conclusion for a full list of collaborators.

Existing serverless platforms largely follow a dis-
aggregated approach. For example, let us examine
the most popular platform for serverless today, AWS
Lambda [35]. Here, lambda functions, custom executa-
bles or scripts, execute in a virtualized environment
provided by AWS [3]. Data is often stored in a scalable
data service, such as Amazon S3 [6]; lambda functions,
when executed, can read and write objects within S3, and
thus implement the desired functionality. By separating
data and compute, each can be scaled independently.
Application logic is then implemented by composing
multiple function calls into a so-called workflow.

The current approach works well with certain non-
interactive applications, but one quickly encounters
difficulties when building more complex, data-intensive
applications and services [5, 23]. Recent surveys noted
that many serverless functions have an execution length
in the order of seconds, are invoked infrequently, and
operate on datasets of less than 10 Mb [15, 36]. These
use cases hint at the limitations of current platforms:
serverless execution in its current form exhibits high la-
tencies, and, additionally, encounters poor performance
when interacting with underlying storage systems [24].

In addition, most serverless platforms are challenging
to program, providing “at least once”-semantics and
no transactional guarantees; functions may execute
more than once, and partial results of an ongoing
execution can be observed by other function calls. As a
result, serverless platforms often require functions to be
idempotent to accommodate these semantics [2] and for
applications to provide their own concurrency control
mechanisms if needed, directly contradicting one of the
core tenets of serverless systems: less complexity for the
application developer.

This paper introduces LambdaStoRe: an integrated
serverless execution engine and scalable storage system
for low-latency cloud applications. Modern storage sys-
tems already provide all of the correctness guarantees
and scalability required by most applications; our work
details how we can embed untrusted applications into
a cloud-based storage system, which enables different

1

applications to share the same storage system, increasing
resource efficiency.

Such a co-located design closely follows the end-to-
end argument [34]; instead of providing consistency and
fault-tolerance separately at the storage and compute
layers, a unified design reduces overhead incurred by
replication and concurrency control significantly. The
system relies on an object-oriented data model that log-
ically stores functions with their associated data (§3.1).

This holistic design enables LambdaStoRe to provide
low latency for function calls and to guarantee strict
serializability across entire serverless workflows (§4.5).
To maintain the scalability and elasticity that is crucial
in the cloud setting, we rely on two mechanisms: First,
the system adjusts the storage layout of an application
depending on the workload it experiences. It spreads
application objects across a variable number of shards or
adjusts the lock granularity within an object if needed
(§4.4). Second, microsharding allows migration of indi-
vidual objects between shards to quickly accommodate
workload changes.

LambdaStoRe outperforms the conventional disaggre-
gated serverless design in both throughput and latency
while providing stronger consistency. We compare it
against Faasm [37], OpenLambda [30], Apiary [25], and
OpenWhisk [17] using microbenchmarks to demonstrate
its performance benefits. We find that our approach
performs excellently, delivering high throughput and
low latency, and is often orders of magnitude better
than existing platforms. Our experiment results show
that LambdaStoRe is able to achieve over 20× the
throughput of container-based solutions for functions
accessing data. LambdaStoRe is able to process twice
as many request than other implementations based on
WebAssembly, while delivering the same throughput.
We also evaluate the system under two application work-
loads – an online message board and a microblogging
application – to demonstrate its scalability. The system
has strictly lower end-to-end latencies than all other sys-
tems we evaluated. We find that performance scales well,
linearly with the number of shards, processing up to 500k
transactions/s with 12 shards, where each transaction
contains one ormultiple serverless function invocations.

2 Background andMotivation

Serverless platforms enable mutually-distrusting appli-
cations to execute on the same cluster, and even one the
same machine, using virtualization and dynamic resource
assignment. First, virtualization isolates individual jobs
from each other, guaranteeing that they do not starve
other jobs of resource, and enusres that jobs that mis-
behave due to a software bug or a malicious developer

cannot affect other jobs. As a result, virtualization
guarantees high fault resiliency and permits the safe co-
location of mulitple applications on the same hardware.
Second, dynamic resource assignment allows for the
(re-)allocation of resources to applications at runtime.
This mechanism ensures high resource efficiency and
enables scalability by, ideally, allocating the minimum
amount of resources that is sufficient for the currently
experienced workload to an application.

Serverless systems then provide an abstraction for
developers to build applications without explicitly
provisioning any machines, virtual or physical, and
without explicitly initializing application processes or
services. Applications are instead implemented as a set
of functions and a cloud provider (such as AWS Lambda,
Microsoft Azure Functions, or Google Cloud Functions)
manages their instantiation and execution.

Serverless application logic executes in the form of
workflows which consist of multiple function calls or jobs.
A workflow is formed by a client or external application
issuing the initial job and those jobs then recursively call
other jobs to compose more complex application logic.
In some system designs, each job only performs a small
task and workflows consist of mulitple jobs [20], but the
complexity and runtime of a job varies depending on the
application.

2.1 Conventional Serverless

A conventional stateful serverless system architecture
usually consists of three components: a coordinating
layer, a compute layer, and a storage layer. We outline
this architecture based on OpenWhisk [17]. OpenWhisk
relies on Apache Kafka [16] to track outstanding jobs.
These jobs are then delegated to a compute layer
(such as Kubernetes [32]). The serverless application
communicates with the dedicated storage layer, e.g., a
DBMS or key-value store, to persist state across function
invocations.

Existing serverless systems provide an elastic compute
environment but cannot support data-intensive applica-
tions, especially those that require strong consistency
or low latencies. The core problem with the design
of contemporary serverless systems is the strict sepa-
ration between compute and storage layers (i.e., their
disaggregated nature), which manifests in two ways.

First, strict disaggregation causes frequent data
movement which results in high latencies. For a simple
read/write workload, a job first needs to fetch data
from the remote storage system, perform the update,
and push the new changes back to the storage system.
While performing the update itself might only take a
few microseconds, fetching and storing the data will
take significantly longer. Often this issue is exacerbated

2

Isolation
Granularity

Elasticity Serializable
Workflows

Cold-Start
Latency

Job Execution
Guarantee

Replicated
Storage

OpenLambda + Job + Yes -No + <1ms (WASM)
- >10ms (SOCK)

- none N/A

OpenWhisk + Job + Yes -No - >100ms - at least once N/A

Faasm + Job + Yes -No + <1ms - at least once + Yes

Shredder + Job -No -No + <1ms - at least once -No

Apiary -Application -No + Yes + <1ms - at least once + Yes

AWS Lambda + Job + Yes -No - >10ms - at least once + Yes

Google Cloud
Functions

+ Job + Yes -No - >100ms - at least once + Yes

Azure Functions + Job + Yes -No - >100ms - at least once + Yes

LambdaStoRe
(This paper)

+ Job + Yes + Yes + <1ms + exactly once + Yes

Table 1: Comparison of LambdaStoRe to other serverless architectures

by additional time spent establishing a TCP connection
between the virtualized environment and the storage
system. While caching can improve performance in this
setting, it is hard to predict which data a binary will
access; as a result, cache misses are frequent.

Second, the lack of coordination between the storage
and compute layers makes providing transactional guar-
antees across function calls difficult. The storage system,
by design, has no notion of jobs and cannot detect that
a job aborted or re-executed, which means it cannot
easily provide atomicity for job executions or entire
workflows. In addition, even if a transaction primitive
is provided in this setting, the high latencies caused by
disaggregation will cause frequent lock contention. For
example, previous work ensured serializability with the
help of atomic logging in the disaggregated serverless
setting which roughly tripled latencies [39].

As a result, most real-world serverless platforms do
not provide transactional guarantees across function
calls and many do not even ensure that a job executes
exactly once but at least once. For example, AWS
Lambda executes functions up to three times [7] if it en-
counters failures. Similarly, Azure and MongDB require
developers to define custom retry policies [28, 29].

2.2 TheMissing Pieces
Our goal is to realize a cloud computing infrastructure
that is data-centric with unified transaction and job man-
agement. Such a platform can leverage knowledge about
the data, its access pattern, and associated functions,
to provide an execution layer with low latencies, high
throughput, and strong consistency.

Existing mechanisms for user defined functions

(UDFs) (such as SQL stored procedures) provide no
proper isolation mechanisms. For example, Apiary [25]
is a mechanism that aims to provide a serverless
infrastructure using stored procedures in VoltDB or Post-
greSQL, but does not virtualize individual jobs, requiring
a separate database deployment for each application.

A data-centric design must overcome three core chal-
lenges. First, it needs a data and execution model that
allows the system to anticipate which data a particular
function will access. Second, the system must support
serializable transactions for generalized programs that
have no pre-defined read or write sets. Third, like
existing cloud computing systems, it must be sufficiently
scalable and elastic. In this paper, we describe Lambda-
StoRe, which implements such a data-centric design.

Table 1 outlines how LambdaStoRe differs from exist-
ing approaches. OpenLambda [1, 30], OpenWhisk [17],
Faasm [37], Shredder [40], AWS Lambda, Google Cloud
Functions, and Azure Functions provide fine-grained
virtualization at the job-level, like LambdaStoRe, but do
not provide serializable transactions. Most existing sys-
tems exhibit cold start latencies of tens of milliseconds
making them not suitable for real-time applications,
while Apiary, Shredder, Faasm, and LambdaStoRe can
spawn a new function in under one millisecond. Api-
ary [25] co-locates storage and execution, and provides
serializeable transactions, but, unlike LambdaStoRe,
only provides coarse-grained isolation at the application-
level and no straightforward means of dynamically
reallocating resources among applications. Shredder
also co-locates storage and execution, but provides no
mechanisms for replication or sharding.

3

3 The LambdaObject Abstraction
LambdaStoRe is a compute-enabled, sharded, and
durable storage system that organizes data and execu-
tion around stateful objects. This section demonstrates
the benefits of such model by detailing its abstraction
and discussion an example application built with it.

3.1 Data Model
3.1.1 Objects

Each application consists of objects, which can hold data
entries and executable code. Encapsulating logic and
data within objects allows for an intuitive way to break
down an application into small and independent compo-
nents, similar to how microservices are structured [10].
In addition, LambdaStoRe uses this notion of objects
to determine where data will be located and where
associated functions can execute. The notion of objects
is designed to be as flexible as possible, supporting
different programming languages, objects of varying
sizes, and application-specific data types.

Objects are instantiated from object types. Object
types define the methods and associated functions of
an object, and what data fields an object has. They are
similar to classes in object-oriented programming. Type
information allows to de-duplicate (meta-)data that is
shared between objects of the same type.

3.1.2 Applications

Each object belongs to an application. The developer
of an application is billed for the storage of all its data
and execution of functions belonging to the application.
Developers define which functions of an object are part
of the application’s public API and which can can only be
accessed from within the application. Currently, objects
can only invoke functions within the same application.
We reserve sharing data and code across application
boundaries and more fine-grained access control for
future work.

3.1.3 Object Entries

Entries form the smallest unit of data and are stored as
(part of) a field within a particular object. Data fields
then define how entries can be accessed and stored,
and how they are indexed. Currently, LambdaStoRe
supports maps, multi-maps, and cells (unstructured data)
for its fields. Other data types can be implemented in
the application code. For example, applications can
implement a set type on top of the map primitive.

Each entry is a key-value pair that is stored and repli-
cated by LambdaStoRe and is associated with a data field

of a particular object. For example, an entry could repre-
sent a single item in an object’s map or the entire content
of a cell. The meaning and content of an individual entry
in an object’s storage are application-specific and opaque
to the datastore. Functions are only exposed to a min-
imal API that allows reading, writing, and performing
simple range queries. Application code is responsible for
(de-)serialization of data and to provide more complex
data operations (e.g., increment or append).

3.2 ExecutionModel
3.2.1 Function Calls

Application logic executes in the form of function calls
(or jobs). Jobs represent the invocation of a particular
function. As with conventional serverless systems, more
complex application logic can be created by composing
multiple jobs into a workflow. The graph of jobs within
a workflow is not pre-defined but generated dynamically
as a function executes.

Functions come in different variants that are similar
to those in object-oriented programming. Constructors
create a new object and initialize it. Methods access or
modify existing objects. Static functions do not have
direct access to any data.

In addition, LambdaStoRe provides a mechanism for
certain operations that require touching many objects:
map calls. For example, one might need to get the
maximum age of all clients within an application, where
each client is a dedicated object. In this case, execution
a function per object is highly inefficient. Map calls take
a set of objects O and a function f , and execute at most
one instance of f per shard. Each invocation of f then
iterates over the subset of O that is located within the
specific shard. This enables efficient batch processing
without adding data movement. The result of a map call
(if any) is aggregated and returned to the caller.

Function calls only have direct access to the data of
the object(s) they are associated with. Functions can
invoke constructors and methods of other objects, or
rely on map calls, to indirectly access or modify their
data. This pattern minimizes data movement which we
discuss in more detail in Section 4.4.

Functions in LambdaStoRe are exposed to a minimal
API on which more complex application logic can be
built. This API allow to read and write object entries,
call functions, manage user sessions, retrieve function
arguments, set return values, get the current time, and
generate randomness. Analogous to system calls in an
operating system, which only provide low-level function-
ality, high-level abstractions are then implemented in
user space (or here, within the virtualized environment).

Functions execute until their complete execution
or are terminated by the runtime. Termination can

4

happens due to fatal errors, e.g., stack overflows, vio-
lating security policies, e.g., attempting to access data
that does not belong to the application, or reaching
their maximum execution time. The latter is important
because malicious functions might never terminate,
starving the system of resources.

3.2.2 Transactions

LambdaStoRe guarantees strict serializability across an
entire workflow. Aworkflow can be represented directed
acyclic graph (DAG), or, more concretely, a directed
rooted tree, of function calls. In this graph, a vertex corre-
sponds to a job and an edge corresponds to a job creating
another job through a function call. Clients initiate work-
flows by invoking a public function. This initial function
call forms the root of the workflow’s DAG, which is then
automatically extended as functions call other functions.
DAGs are not predefined by the application developer
but generated dynamically at runtime.

Developers can inspect the DAG of a transaction
using an execution trace. They can set varying level of
verbosity for traces. By default, traces contain a graph
of all function invocation, but developers can request to
log every API call and storage access as well.

Function calls by themselves execute sequentially, but
workflows can execute multiple jobs concurrently. This
is achieved by letting functions issue multiple function
calls at the same time and wait for all of the to terminate.
For example, in a social network application, a function
that creates a user’s post might invoke a function on all
followers of that user to update their respective timelines.
While the initial post creation executes sequentially, all
follower timelines can be updated in parallel.

Because each workflow is contained within a single
transaction, we use the terms workflow and transaction
interchangeably when talking about our system.

3.3 Example Application

LambdaStoRe supports arbitrary applications which we
demonstrate in this section. We implemented: Cloud-
FoRum, an online discussion board similar to Reddit, as
an application in our serverless system. This section
outlines part of the implementation in Rust code, with
some simplifications due to space constraints.

Listing 1 shows how object types are declared for an
application. Here we oultine three types. Accounts rep-
resent users of the online forum and contain references
to all threads created by the users and all comments they
made. Comments are referenced by the thread identifier
and their index within the thread. Threads store an
initial post by the thread creator and a sequence of
comments. They store comments in a custom structure

Listing 1: Object types for an online forum application
#[lambda_object] struct Account {

name: Cell<String>,
threads: Set<ObjectId>,
comments: Set<(ObjectId,u32)>,

}
#[lambda_object] struct Community {

by_name: MultiMap<String, ObjectId>,
by_time: MultiMap<u64, IndexEntry>,

}
#[lambda_object] struct Thread {

author_name: Cell<String>,
community_id: Cell<ObjectId>,
author_id: Cell<ObjectId>,
title: Cell<String>,
text: Cell<String>,
comment_count: Cell<u32>,
comments: Map<u32, Comment>,

}

(Comment) which is not an object type itself but defines
how data within the comment field is structured. To the
storage system, this structre is justs opaque data. Finally,
threads are indexed using the Community type.

Listing 2 shows the workflow of adding a new com-
ment to an existing thread. It relies on LambdaStoRe’s
Rust bindings which hide most boilerplate code such
as serialization of data. User’s invoke the workflow by
calling the create_thread method on an object with
the Account type. They pass arguments, such as the
comments content, in a JSON document which the job
retrieves using the get_json_args call. While Lamb-
daStoRe also supports binary arguments, JSON makes
interacting with client code written in JavaScript easier.

The function then authenticates the user (not shown)
and look up the users identifier and name. It then calls
the add_comment method on the particular thread
a comment should be added to, which executes in a
dedicated job. When a call is invoked they will execute
in the background by default, unless the parent job
explicitly calls join like shown. This API enables
concurrency similar to the thread API in most operating
systems: multiple child jobs can be spawned and waited
on at the same time.

The add_commentmethod then stores the comment
as part of the Thread object. It adds time information
to the comment using the get_unix_time host call.
Finally, it returns the comment’s identifier, which is
then used by the Account object to store a reference to
the comment.

4 LambdaStoRe
This section explains LambdaStoRe’s design in detail.
First, we outline the overall architecture of the system.
Then, we describe how it allows executing functions on

5

Listing 2: Implementation of CloudFoRum’s comment
functionality. Low-level API calls are hidden behind
a higher-level abstraction. Access control and error
handling code was omitted for brevity.
#[lambda_functions] impl Account {

fn create_comment(&self,
app: Application, args: json::Value) {

args.set("author_id",self.get_identifier());
args.set("author_name",self.name.get());

let thread_id = args.get("thread_id");
let result = app.get_object(thread_id)

.call_json("add_comment", &args)

.join();

// Store a reference to the comment
let comment_id = result.get("comment_id");
self.comments

.insert(&(thread_id, comment_id));
}

}

#[lambda_functions] impl Thread {
#[protected]
fn add_comment(&self, args: json::Value) {
let comment = Comment {

author_id: args.get("author_id"),
author_name: args.get("author_name"),
text: args.get("text"),
time: get_unix_time(),

};

// Increase the total comment count
let comment_cnt = self.comment_count.get();
let comment_id: u32 = comment_cnt + 1;
self.comment_count.put(&comment_id);

// Store the comment in the thread's object
self.comments.put(&comment_id, &comment);
set_json_result({"comment_id": comment_id});

}
}

a single object using virtualization and dynamically ad-
justing its granularity. Finally, we describe applications
operate on multiple objects and at scale, using sharding
and serverless transactions.

4.1 System Architecture
A LambdaStoRe cluster has four types of participants:
clients, frontends, storage nodes, and coordinating
nodes. Figure 1 sketches how these components interact
with each other.

4.1.1 The Coordinating Service

The coordinating service (or simply “coordinator”) is
responsible for maintaining all metadata. In particular,
it keeps track of all participants in the cluster and the

Stateful / Replicated

Stateless

Shard 2

Shard n

Shard 1
Coordinator

Client Frontend

HTTP

Critical Path

Non-Critical Path

Figure 1: LambdaStoRe relies on a shared-nothing
architecture. A centralized coordinator is only needed
during reconfiguration or when encountering failures.

configuration of individual shards. It also tracks on
which shards objects are placed. When nodes, frontends,
or clients join the network, they will first connect to the
coordinating service, which will then inform them about
all (other) nodes in the system.

In contrast to conventional serverless systems where
all requests pass through some stateful frontend, this ser-
vice is not involved in most transactions. Transactions
only involve the coordinator if they create new objects or
when there is an ongoing reconfiguration of the cluster.
Reconfiguration occurs when the system performs a load
balancing decision (see Section 4.4) or during failures.

4.1.2 Nodes and Replica Sets

For each shard, a set of f+1 nodes will replicate its state
to tolerate up to f simultaneous failures. Shards rely on
chain replication [21] to ensure durability. As the name
indicates, nodes in the set are arranged in a chain, where
the head represents the primary and all other nodes are
secondary replicas. State changes, such as transaction
commits, will traverse the chain from the head to the tail.
Once the state change reaches the tail, a confirmation
message will traverse the chain the other way.

Requests are always sent to the primary first, which
then determines where to execute it. When contention
is low, it is most efficient to execute jobs directly at the
primary. The primary may delegate jobs to other nodes
in the replica set during high contention. Section 4.5.2
discusses the latter in more detail.

4.1.3 Clients and Frontends

Clients can directly interact with the datastore through
a proprietary protocol or indirectly through a HTTP
frontend. In the former case, they connect to the
coordinating service which will give them information
about other participants in the cluster.

When using the HTTP frontend, clients do not need
to maintain information about cluster configuration or

6

implement a custom protocol. Instead, the frontend acts
as an intermediary that maintains an up-to-date view of
the cluster configuration and forwards client requests.
Frontends are still stateless, in that they can fail without
losing any valuable information or corrupting data.
The use of HTTP frontends is particularly useful when
building web applications or short-lived clients.

4.2 Virtualization Layer

LambdaStoRe enables untrusted computation to be
directly embedded in storage servers through software-
based virtualization, specifically through the use of
WebAssembly (orWASM) [22]. WASM is a bytecode that
a high-level language, like C++ or Go, can be compiled to.
The WebAssembly runtime can then directly interpret
and execute that bytecode or, more commonly, compile
it to machine code. LambdaStoRe takes the latter
approach to achieve performance that is close to that of
native programs while still protecting against software
bugs and malicious code.

We choseWebAssembly as a virtualization mechanism
because its overheads are orders of magnitude lower
than those of virtual machines (VMs) or containers.
While this technology is software-based, recent interest
in WASM in the context of blockchains [18, 19] has
led to its implementations being thoroughly vetted for
security. It is important to point out that a system like
LambdaStoRe could also be built by co-locating contain-
ers or VMs on the same machine as the storage node.
We found the overheads of these mechanisms outweigh
potential benefits such as slightly better isolation or
more fine-grained control over CPU access.

After the application developer has compiled their
code into WebAssembly it will register it with the
coordinator. The coordinator compiles its WebAssembly
instructions to machine code and then forwards it to all
storage nodes. During compilation, it injects additional
code that protects against misbehaving programs. For
example, every memory access is guarded by a bounds
check, and trap handlers are installed to manage other
software failures, e.g., division by zero.

Nodes then directly embed the generated code into
their address space. To start a function, a node will
assign it some address space using mmap and perform
a context switch by storing register contents and chang-
ing the program counter to some location inside the
function’s code. The function can interact with the host
environment to a predefined set of API calls that perform
a context switch back to regular storage code, similar to
how system calls switch from user to kernel space.

field=”name”
value=”John”

field=”threads”
hash=0xDEAD

value=0xCOFFE

field=”comments”
hash=0xE4F9

value=(0xBA4, 5)

Guard 0
(field=”threads”,
hash=0xDEAD)

EntrySet 0 EntrySet 1

field=”comments”
hash=0xD5E5

value=(0xF00, 1)

EntrySet 2

Guard 1
(field=”comments”,

hash=0xD5E5)

Figure 2: Visualisation of a Account object storage,
where the keyspace is partitioned into three sets

4.2.1 Metering

LambdaStoRe protects against non-terminating func-
tions using periodic timer interrupts. Upon encountering
an interrupt, the trap handler will check if the current
function has reached its maximum execution time and
aborts if it needed. This is a key difference to conven-
tional storage systems which can be stalled indefinitely
by faulty stored procedures.

Keeping track of the execution time of a function is
also necessary to support a proper billing model in the
cloud setting.

4.3 Dynamic Object Granularity

A key challenge in the design of an object-oriented
storage system is that interpretation of what data and
program logic an object contains is highly application-
specific and that application can have objects of varying
sizes. For example, one type of object might represent
an index of all users within an online forum. Another
type of object might represent an individual user. In
most cases, the former would contain many more entries
and receive more frequent queries and updates.

LambdaStoRe tracks metadata for each object in
order to perform concurrency control. Naively there
could always be one set of metadata per object or one
set of metadata per entry. The former might be much
too coarse-grained in the case of large objects, while the
latter would create too much bookkeeping overhead. For
context, the system’s design aims to support millions of
objects, some of which might be extremely popular.

4.3.1 Entry Sets

Entries within an object are grouped into sets to support
varying granularity of objects. Initially, an object only
consists of a single entry set. As entries get created,
LambdaStoRe probabilistically splits the corresponding
entry set into smaller sets.

Each object has a number of guards which define
where an entry set ends and a new set begins. A guard
is simply a key that maps into the keyspace of an object.
Figure 2 gives an example of such a partitioning. Here, an
instance of the Account-type from Section 3.3 is split
into three entry sets. The first entry set encompasses
the account name and parts of the threads-field, the

7

second the remainder of the threads-field and part of
the comments-field, and the last the remainder of the
comments-field. Note, that this is simplified and, for
example, mechanisms to handle hash collision are not
shown.

Entry sets serve as units of locking and version
control. Instead of locking entire objects, transactions
only involve entry sets they interact with. Each set can
be locked individually and its version number increases
when written to. For example, in the case of Figure 2,
one transaction could modify the account name, while
another updates the thread field concurrently.

Version information of entry sets is also used to
implement consistent range queries. When a transaction
reads a range, it will track the version numbers of all
entry sets covered by this range to detect concurrent
updates. For example, in the case of Figure 2, a trans-
action can lock entry sets 1 and 2 to read all contents
of the comments-field. A limitation of this design
is that LambdaStoRe does not support range queries
across multiple objects. Entry sets of the same object
are always located within the same shard and there
exists are clear order among them, while neither is true
for entry sets belonging to different objects. However,
transactions can still span multiple objects.

4.3.2 Entry Set Partitioning

With some chance, a write to a key will turn that key
into a new guard and, thus, split the entry set it writes
to in half. As a result, objects that are written to more
often will likely contain more guards and thus be split
into more separate entry sets. The intuition behind
this design is that only write-heavy workloads benefit
from higher lock granularity. A similar mechanism has
shown to work well in the context of Log-Structured
Merge Trees [31].

Updates to entry sets happen without interrupting the
function execution and without violating consistency
of the system. Entry sets are modified only during a
transaction’s commit when the datastore processes the
transaction’s writes. At this point, all involved entry
sets are write-locked by the transaction and no other
transaction can modify the sets. For example, in the
case of Figure 2, a transaction would have written
the entry at ("comments", 0xD5E5) and inserted
the corresponding guard as part of its commit. We
discuss later how the transaction protocol also avoids
inconsistent reads during this phase.

Our current system never removes guards or, in other
words, never merges entry sets, but this can be added in
a future version. For this, a transaction would need to
lock both entry sets before merging them. Additionally,
the system would need to develop a policy that decides

when entry sets are no longer needed.
We outline in Section 4.5 how these locks and version

numbers are used for concurrency control. A future
version of LambdaStoRe could also leverage these
version numbers for multi-version concurrency control
or to provide an efficient caching mechanism.

4.4 Sharding Applications

LambdaStoRe treats objects as microshards [8], which
ensures objects and all their data get mapped to exactly
one physical shard. This has two benefits. First, the
system can react to changes in the workload in a more
fine-grained manner by migrating individual objects.
This is important because objects can vary greatly in
size. Second, function invocations are guaranteed to
only touch one shard and, thus, avoid copying data from
another shard.

Generally, the system tries to map objects of the
same application to as few shards as possible to increase
locality. Like other serverless systems, LambdaStoRe
can also map objects of different applications to the
same shard to maximize resource utilization. Access
control and virtualization (see Section 4.2) ensure that
applications executing on the same machine cannot
interfere with each other.

The coordinator manages the shard assignment. It
keeps a mapping from nodes to shards and objects to
shards. In addition this mapping is sharded as well
and management of the mapping be distributed across
multiple physical machines. Each other participant,
i.e., nodes and clients, fetch object locations from the
coordinator as needed and cache them locally.

Node assignments for replica sets are only changed
during failures or when the overall size of the cluster
changes. These mappings are very small, only a few
hundred bytes per shard, and kept up to date at all par-
ticipants. The coordinator establishes a TCP connection
to all nodes and interprets termination of the connection
as a node failures. When it detects a node failure, it will
reconfigure the replica set by promoting the next node
in the chain to primary and adding a new secondary
node to the end of the replication chain.

The object mapping is considerably larger and
changes when new objects are created or the workload
changes. For example, when a new thread is created in
CloudFoRum, will require the system to create a new
object. When someone adds a comment, no new object
is created, merely the contents of an existing object are
updated. Similarly, if a particular thread is very popular,
it may be moved to a different shard.

The coordinating services only pushes mapping
updates to nodes that are affected by the change to
increase efficiency. Concretely, nodes of the object’s

8

new and old replica sets are notified. Other nodes and
clients detect the mapping change in one of two ways
if needed. If the location of the object is not cached
locally yet, they request it directly from the coordinator.
Otherwise, they contact the replica set of the cached
location. If the location is still up to date, the request
will be processed normally. If the location is outdated,
the replica set will respond with a cache miss message
in which case the coordinator needs to be contacted.

4.5 Serverless Transactions

Transactions in LambdaStoRe encapsulate a serverless
workflow: They ensure that all functions invocations
within the same workflow execute with ACID guaran-
tees.

LambdaStoRe enforces strict serializabilty using opti-
mistic concurrency control. Transactions are processed
in three phases: execute, prepare, and finalize. During
the execute phase the function(s) involved in the trans-
action execute, and the transaction tracks their read and
write sets. In the prepare phase write locks are acquired
and the transaction checks for conflicts and validates
all it reads. During the finalize phase the transaction
either commits or aborts. A transaction aborts if in the
execution phase the application code requested to do so,
there was a fatal error (i.e., the program crashed), object
placement information was outdated, or the prepare
phase failed.

As outlined in Section 3.2, a workflow consists of
multiple jobs all contained within a single transaction A
workflow is initiated by a client issuing a request to the
LambdaStoRe cluster in form of a function invocation.
This initial function invocation will create a new transac-
tion. When a function calls another function, the latter
will inheirt the former’s transaction. As a result, a trans-
action tracks the read and write set of an entire workflow.

4.5.1 Multi-Shard Transactions

LambdaStoRe supports sharding and cross-shard trans-
actions. Objects can be located on different shards
and, as a result, a function invocation might lead to
execution on that shard. Alternatively, one could ship
the data to the original node and execute all functions
there. However, that would limit the processing power
of a transactional workflow to that of a single node and
defeat the purpose of co-locating storage and computa-
tion. We also experienced in early evaluation that such
a disaggregated design increases the likelihood of aborts
as transactions might execute on stale data.

When executing across multiple shards, a single shard
coordinates the transaction. When a job terminates, it
will return its output back to the calling job. In addition,

it will report the identifiers of any additional shards in-
volved in the transaction, and whether new objects were
created. This process happens recursively until the initial
job (the root vertex of the workflow’s DAG) terminates.

During the prepare phase, the coordinating shard will
tell all other shards to prepare and only move to the
commit phase if all shard succeeds. If the prepare phase
fails the coordinating shard will tell all shards to abort.
During the commit phase, the coordinating shard will
tell all shards to commit and inform the coordinating
service about newly created objects (if any).

4.5.2 Delegated Transactions

A shard’s replica set consists of multiple nodes holding
an up-to-date copy of the shard’s data. LambdaStoRe
leverages this fact and does not only allow execution of
jobs at the primary of a shard but at any replica.

A replica set’s primary keeps track of which replica is
executing which transactions Once a backup has finished
processing a transaction it sends its read and write sets
to the primary to finalize the transactions. This last step
is necessary to uphold serializability. Because of this
extra communication and validation step, it is generally
more effective to execute at the primary, but delegation
can quickly provide more compute power for short-term
workload changes or until the system is done migrating
objects to adapt to long-term workload changes.

4.5.3 Concurrency Control Protocol

LambdaStoRe uses a variant of Silo’s optimistic con-
currency control protocol [38]. During reads in the
execution phase, instead of atomically reading the value
and corresponding version number atomically, Lambda-
StoRe takes advantage of the atomic interface provided
by the key-value storage backend and allows each
transaction to read a version number staler than the read
value. That is, during read, each transaction first records
the version number of the corresponding entry set and
then queries the storage backend for the value; and since
writers do not block concurrent readers, we additionally
require the transactions to write each value back before
updating its version number during commit phase.

4.5.4 Fault Tolerance

LambdaStoRe can tolerate crash failures of individual
nodes. We refer to a node crashing, losing power, or
disconnecting as “failure.” Note, that for function execu-
tion, the platform supports arbitrary (or Byzantine [26])
failures through its virtualization mechanism, which we
discuss in Section 4.2.

Transaction execution supports failures of any node
and of the client/frontend that issued the transaction.

9

Algorithm 1: The Transaction Protocol of Lamb-
daStoRe
Fn read(txn, key):

version← get_version(key)
value← get(key)
txn.read_set.insert(key, version)
return value

Fn write(txn, key, value):
txn.write_set.insert(key, value)

Fn prepare(txn):
foreach key, value in txn.write_set do

lock(key)
foreach key, version in txn.read_set do

if version ̸= get_version(key)
or is_locked(key) then

return aboRt
return commit

Fn commit(txn):
foreach key, value in txn.write_set do

put(key, value)
update_version(key)
unlock(key)

We assume that clients are unreliable and, after issuing
a transaction, they have no role in coordinating a
transaction. Clients can merely re-issue a transaction if
it failed. Transactions may succeed even if the issuing
client has failed.

We generally refer to a shard failure if one of its
nodes fails. Each shard has a replica set of f +1 nodes,
where at most f nodes can fail. Node failures result in
a reconfiguration of the affected shard. A shard will
reconfigure by restarting or replacing the affected node
and the coordinator will notify all other shards about
the reconfiguration.

Recovery from Secondary Replica Failures Failures
of secondary replicas can be handled by the shard’s
primary as it will always process transaction prepares
and commits first. Once the primary gets informed about
a shard reconfiguration, it will re-issue any delegated
transactions/jobs that were affected by the failure.

Recovery from Transaction Manager Failures Gener-
ally, when the primary fails a new primary will take over.
That primary is chosen by the coordinator from one of
the non-faulty replicas remaining. This allows the new
primary to take over immediately without executing a
complex recovery protocol. A new replica then joins
the set and synchronizes the state from the other nodes.
The primary then will reissue commit requests if needed.

State about executing transactions will be lost, but this
does not violate atomicity guarantees.

For multi-shard transactions, the manager also needs
to consolidate the state at other nodes. Some shards
might have prepared the transaction already and need
to finalize it in order for locks will be released properly.
Additionally, some shards might have finalized the trans-
action already andwe need tomake sure to commit/abort
transactions properly at all shards to uphold atomicity.

All shards notify the failed shard about prepared trans-
actions that originated from it. If the new transaction
manager has logged a commit for the transaction, it will
ask the involved shard(s) to commit. If it does not have
logged a commit for the transaction, it either aborted or
has not finished its prepare phase yet, which means it
can be safely aborted.

Recovery from Remote Shard Failures When a shard
fails, information about in-progress transactions, includ-
ing remote transactions, might get lost. For transactions
that are still executing, jobs will simply be re-issued.
Similarly, for transactions that are still in the process of
being prepared, the prepare request will be re-issued.

Transactions that are already prepared or partially
finalized need to be finalized consistently across all
shards. To do this, the new primary first has to check
for any in-progress transactions and then query each
transaction’s manager whether to commit or abort
it. The new primary will always have access to the
transactions write set in the case of a commit, as it has
been replicated during the prepare phase At this point,
it is guaranteed that the prepare phase at every shard
succeeded as otherwise the transaction would not have
been able to move to the commit phase.

5 Preliminary Evaluation

We now evaluate LambdaStoRe, using both microbench-
marks and more realistic application workloads. The sys-
tem is implemented in 33k lines of Rust code and builds
on top of Tokio (a framework for asynchronous execu-
tion) [12] and Wasmtime (a WebAssembly runtime) [4].

Our evaluation answers the following questions

• What are the benefits and overheads of LambdaS-
toRe’s co-located design?

• How does object granularity affect performance?
• How expensive is the creation of objects?
• Can LambdaStoRe handle arbitrary failures of
application code?

• What benefit does LambdaStoRe provide to applica-
tions?

10

5.1 Experimental Setup

We compare LambdaStoRe with OpenLambda, Open-
Whisk, Apiary, and Faasm. Like most open source
serverless systems, OpenLambda’s SOCK runtime [30]
and OpenWhisk rely on containers. While containers
are more lightweight than, for example, virtual ma-
chines, they still incur a significant overheads. Faasm
combines containers and WebAssembly to reduce that
overhead. OpenLambda also provides a more efficient
WebAssembly runtime [1] against which we evaluate
as well. Finally, Apiary allows to execute serverless
functions as stored procedures in PostgreSQL or VoltDB.
However, unlike LambdaStoRe, Apiary does not isolate
functions executions.

All benchmarks were execute on Cloudlab [14] with
a cluster of c220g5 machines. These machines are
equipped with two Intel Xeon Silver 4114 CPUs (each
having ten physical cores and Hyper-Threading), 200GB
of DDR-4 memory, and 10Gbit NICs.

In our evaluation setup, OpenLambda and Open-
Whisk do not perform any replication of client requests
or concurrency control. Most other serverless systems
contain basic fault-tolerance mechanisms (as outlined in
Section 2) that incur additional overheads. For example,
Faasm – as of version 0.12 – has a centralized planner
component that keeps track of outstanding requests. For
Faasm, data is persisted in Minio, a datastore with an
API similar to S3, and Apiary uses PostgreSQL to store
data. We use LambdaStoRe as a storage backend for all
other setups.

In the OpenWhisk setup, each compute machine runs
a standalone OpenWhisk instance which encapsulates all
components including a controller that accepts user re-
quests, an invoker that launches lambda instances, Kafka
for streaming requests from the controller to the invoker,
and CouchDB for storing results of each lambda invo-
cation. Each client machine runs a light-weight client
frontend that evenly distributes requests among the com-
pute instances to balance load. We note that our setup
deviates from traditional OpenWhisk setups where a ded-
icated controller node manages a set of invoker nodes,
but the experimental results presented in our setup agree
with its performance presented in other recent work [25].

For Apiary we instantiate one “worker” process on
one of the storage node. This process merely forwards
function invocations to PostgreSQL. In addition, we
instantiate a HTTP frontend on each client machine.
The frontends take in client requests and talk to the
worker process using Apiary’s proprietary protocol.
Data is replicated by configuring two backup nodes for
each PostgreSQL database.

100 101 102 103 104 105

Hashes per Function Call

102

103

104

105

106

Th
ro

ug
hp

ut
 (H

as
he

s/
s)

Möbius
OpenLambda
(WASM)

OpenLambda
(SOCK)
OpenWhisk

Faasm
Apiary

Figure 3: Comparison of the virtualization and coordina-
tion overhead of different serverless systems, which are
especially visible for short-running functions

5.2 Microbenchmarks

5.2.1 Disaggregation and Coordination Overheads

Figure 3 shows the overheads introduced by comparing
jobs of different lengths. Virtualization and coordination
overheads are mostly independent of the job length, so
they will be less significant for longer-running jobs. This
benchmark computes a number of SHA512 hashes of 1kb
input data. We gradually increase the number of hashes
computed per function call to generate longer-running
functions (shown on the x-axis). Once the overhead is
sufficiently amortized overall throughput (in hashes per
second, shown on the y-axis) for all workloads is about
the same. Note that all observed numbers are warm
starts as the same function will be invoked repeatedly.
In all cases, we use a single machine to execute functions:
either a dedicated compute nodes for the disaggregated
designs and a single store node for the co-located design.

We observe that the overhead generated by contain-
ers, both for our standalone implementation and for
OpenWhisk, initially outweighs that of WebAssembly
by multiple orders of magnitude. At on hash per
function call, LambdaStoRe is able to achieve 798×
the throughput of OpenWhisk. It also outperforms
Faasm and OpenLambda’s SOCK runtime significantly.
OpenLambda’s WebAssembly runtime initially outper-
forms LambdaStoRe slightly, because the latter has
needs to perform additional coordination work before
delegating the function. This work is needed to ensure
serializability in case the function does access data,
which cannot be predicted ahead of time for generalized
functions. This overhead is amortized at about 1k hashes
per function call, roughly 80ms of function execution
time. All workloads converge at about 100k hashes per
function call or roughly 800ms of execution time.

11

0 100 200
Throughput (tsd. transactions/s)

0

50

La
te

nc
y

(m
s,

m
ea

n)
Read Only

0 20 40 60
Throughput (tsd. transactions/s)

0

50

50% Read, 50% Write

0 10 20 30
Throughput (tsd. transactions/s)

0

50

100
Write Only

Möbius OpenLambda
(WASM)

OpenLambda
(SOCK) OpenWhisk Faasm

Figure 4: Comparison of latencies for read and write workloads. LambdaStoRe’s outperforms other system in all
cases.

Write Chance 0% 25% 50% 75% 100%
Möbius 230487 80401 57293 44045 36748
OpenLambda (WASM) 147096 41005 27898 20098 14652
OpenLambda (SOCK) 11719 10902 10610 10392 10109
OpenWhisk 282 276 275 283 278
Faasm 242 204 306 422 16922
Table 2: Comparison of throughput in read and write workloads

5.2.2 Throughput and Latency

We evaluate LambdaStoRe under a number of mi-
crobenchmarks to show the overhead generated by co-
ordination as well as the benefit of colocation. Here, we
pre-load the storage systemwithwith 10000 objects, each
with 100 entries of 1kb size, resulting in a total of one
million entries stored at the beginning of the experiment.

We ran the microbenchmarks with on a set of six
nodes for the disaggregated setting (Apiary and Lamb-
daStoRe) and three nodes for the aggregated setting (all
other systems). In both cases three nodes form a storage
shard and, for the disaggregated setting, an addition
three nodes are allocated to execute computation. For
Faasm, we set up a Kubernetes cluster with six machines
to execute workers, planners, and storage.

Table 2 shows the performance of LambdaStoRe
and its baselines under different read, write, and mixed
workloads. We varied the number of clients and only
show the results that performed best for each individual
configuration. LambdaStoRe significantly outperforms
all other systems. Note that writes are generally slower
because the require replication across storage nodes.

For Faasm we observed much lower write and entry
creation performance, compared to updates. As a result,
we executed this workload with only 100 objects to keep
startup times for the experiments manageable. Each
entry and object metadata is mapped to a single entry
in the underlying blob storage. We observed write per-
formance that is orders of magnitudes higher than read
when evaluating this system. Note that Faasm allows

to explicitly synchronize (or “push”) writes from the
worker to the storage. Our benchmark did not perform
this operation and let Faasm decide when and whether
to synchronize writes, which explains the higher perfor-
mance when writing as compared to reading. Finally, for
Faasm we batched up to 50 requests as recent versions
include a centralized planner that performs much better
with batching than individual requests.

The benefits of co-location are even more visible when
we take latencies into account as shown in Figure 4.
In this experiment, we vary the number of concurrent
requests to change the total throughput and plot the
mean latency as a function of the total throughput.Note
that we do not plot latencies for Faasm as they exhibited
high variance ranging anywhere from 10milliseconds
to over one second. This variance can most likely be
attributed to the centralized planner component that
all request batches go through. LambdaStoRe does not
only scale to higher performance but also has strictly
lower latencies than the baselines we evaluated.

5.3 Application Performance

We evaluated end-to-end performance using two
different application workloads. We first evaluate
CloudFoRum, an online message board similar to Reddit
that we outlined in Section 3.3. Here discussion is
grouped into threads each consisting of a number of
posts. Each thread is part of a community (or “subred-
dit”). We pre-load the system with 100 communities

12

2 4 6 8 10 12
Number of Shards

0

50

100

150
Th

ro
ug

hp
ut

(ts
d.

 tx
ns

/s
)

Retwis

2 4 6 8 10 12
Number of Shards

0

200

400

600
CloudForum

Möbius OpenLambda (WASM)

Figure 5: Scalability of applications executing on Lamb-
daStoRe with up to 12 shards. Baseline performance
is shown for up to six shards as it uses twice as many
servers.

consisting of a total of 100,000 threads. Each user ac-
count for each client thread. The number of concurrent
client threads scales with the number of shards.

This workload consists of the following transaction
types with their share of all transactions in parentheses.
get-thread (90%) fetches the contents of a thread includ-
ing all its posts. This is a read-only query consisting
of a single function call. add-comment (10%) extends
an existing thread with a new post. This will update
the affected thread, and the poster’s account, each
performed by a separate function call.

The second application we evaluate the storage
system with is Retwis [33]. This benchmark simulates
a Twitter-like social network where a user can follow
other users, create posts, and get its “timelines” which
consist of the most recent posts from its followers and
themselves. We pre-load the system with 500,000 users,
each has 10 followers and 10 posts on its timeline to
avoid network bottlenecks. Each post is 1024 bytes long.

This workload consists of the following transaction
types. get-timeline (90%) fetches the most recent
50 posts on the timeline of the calling user. This is
a read-only query consisting of a single function call.
create-post (10%) adds a newpost to the post owner’s and
its followers’ timelines. Since we pre-loaded each user
with 20 followers, this transaction updates 21 objects.
Using LambdaStoRe’s map functionality, this can be

The results are presented in Figure 5 LambdaStoRe
scales linearly with the number of shards. While the
disaggregated design using OpenLambda also scale with
the number of shards, it yields much lower performance
while using twice as many servers. In addition we
provide latency results in Figure 6.

6 Conclusion
Wedescribed LambdaStoRe, a new system that combines
storage and execution for data-intensive applications.

50 100
Throughput

(tsd. transactions/s)

0

20

40

La
te

nc
y

(m
s,

m
ea

n)

Retwis

0 100 200
Throughput

(tsd. transactions/s)

0

10

20

CloudForum

Möbius OpenLambda (WASM)

Figure 6: Per-Application latency for a configuration
with four shards.

LambdaStoRe is a the missing middleground between
rigid microservices and elastic but slow serverless sys-
tems. It provides better performance, improved fault tol-
erance, and stronger consistency than existing systems.

We view the system as presented as an important
step towards interactive and resource efficient serverless
applications. Future work will investigate full-stack
frameworks to efficiently build applications with little
code on top of LambdaStoRe.

Acknowledgements This is a long running project
that started at the University of Wisconsin-Madison.
LambdaStore would not have been possible to build
without the help of Suyan Qu, Aditya Jain, Pu Guo,
Mayur Choudhary, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau.

13

References
[1] OpenLambda WebAssembly Worker. https:

//github.com/open-lambda/open-
lambda/tree/main/wasm-worker (Last
Accessed October 2023).

[2] Aamazon. AWS Knowledge Center: How do
I make my Lambda function idempotent?
https://repost.aws/knowledge-
center/lambda-function-idempotent
(Last Accessed May 2023).

[3] Alexandru Agache, Marc Brooker, Alexandra
Iordache, Anthony Liguori, Rolf Neugebauer, Phil
Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight Virtualization for Serverless Appli-
cations. Symposium on Networked System Design
and Implementation, pages 419-434, Santa Clara,
California, February 2020.

[4] Bytecode Alliance. Wasmtime. https:
//wasmtime.dev/ (Last Accessed April 2023).

[5] Amazon. Learning Serverless (and why it is hard).
https://pauldjohnston.medium.com/
learning-serverless-and-why-it-is-
hard-4a53b390c63d (Last Accessed April
2023), 2022.

[6] Amazon. S3 Cloud Object Storage. https://aws.
amazon.com/s3/ (Last Accessed March 2022).

[7] Amazon Web Services, Inc. Error handling and
automatic retries in AWS Lambda. https:
//docs.aws.amazon.com/lambda/
latest/dg/invocation-retries.html
(Last Accessed March 2024).

[8] Muthukaruppan Annamalai, Kaushik Ravichan-
dran, Harish Srinivas, Igor Zinkovsky, Luning Pan,
Tony Savor, David Nagle, and Michael Stumm.
Sharding the Shards: Managing Datastore Locality
at Scale with Akkio. Symposium on Operating
System Design and Implementation, pages 445-460,
Carlsbad, California, October 2018.

[9] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping
Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric
Rabbah, Aleksander Slominski, and Philippe Suter.
Serverless Computing: Current Trends and Open
Problems. Research Advances in Cloud Computing,
pages 1–20, 2017.

[10] Netflix Technology Blog. Netflix Platform
Engineering — we’re just getting started.

http://netflixtechblog.com/neflix-
platform-engineering-were-just-
getting-started-267f65c4d1a7 (Last
Accessed March 2022).

[11] Cloudflare, Inc. ”Why use serverless com-
puting?”. https://www.cloudflare.
com/learning/serverless/why-use-
serverless/ (Last Accessed April 2023).

[12] The Tokio Contributors. tokio-uring. https:
//github.com/tokio-rs/tokio-uring
(Last Accessed January 2023).

[13] Data Dog. The State of Serverles. https://www.
datadoghq.com/state-of-serverless/
(Last Accessed May 2023).

[14] Dmitry Duplyakin, Robert Ricci, Aleksander
Maricq, Gary Wong, Jonathon Duerig, Eric Eide,
Leigh Stoller, Mike Hibler, David Johnson, Kirk
Webb, Aditya Akella, Kuang-Ching Wang, Glenn
Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and
Prabodh Mishra. The Design and Operation of
CloudLab. USENIX Annual Technical Conference,
pages 1-14, Renton, Washington, July 2019.

[15] Simon Eismann, Joel Scheuner, Erwin Van Eyk,
Maximilian Schwinger, Johannes Grohmann, Niko-
las Herbst, Cristina L. Abad, and Alexandru Iosup.
Serverless Applications: Why, When, and How?
IEEE Softw., 38(1):32–39, 2021.

[16] Apache Software Foundation. Apache Kafka.
https://kafka.apache.org/ (Last Ac-
cessed January 2023).

[17] Apache Software Foundation. OpenWhisk
Architecture. https://cwiki.apache.
org/confluence/display/OPENWHISK/
System+Architecture (Last Accessed January
2023).

[18] Ethereum Foundation. Ethereum flavored We-
bAssembly (eWASM). https://github.com/
ewasm (Last Accessed January 2023).

[19] Web3 Foundation. Polkadot Wiki: WebAssem-
bly. https://wiki.polkadot.network/
docs/learn-wasm (Last Accessed January
2023).

[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha
Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,
Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin
Hu, Meghna Pancholi, Yuan He, Brett Clancy,

14

https://github.com/open-lambda/open-lambda/tree/main/wasm-worker
https://github.com/open-lambda/open-lambda/tree/main/wasm-worker
https://github.com/open-lambda/open-lambda/tree/main/wasm-worker
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://wasmtime.dev/
https://wasmtime.dev/
https://pauldjohnston.medium.com/learning-serverless-and-why-it-is-hard-4a53b390c63d
https://pauldjohnston.medium.com/learning-serverless-and-why-it-is-hard-4a53b390c63d
https://pauldjohnston.medium.com/learning-serverless-and-why-it-is-hard-4a53b390c63d
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
http://netflixtechblog.com/neflix-platform-engineering-were-just-getting-started-267f65c4d1a7
http://netflixtechblog.com/neflix-platform-engineering-were-just-getting-started-267f65c4d1a7
http://netflixtechblog.com/neflix-platform-engineering-were-just-getting-started-267f65c4d1a7
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://github.com/tokio-rs/tokio-uring
https://github.com/tokio-rs/tokio-uring
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://kafka.apache.org/
https://cwiki.apache.org/confluence/display/OPENWHISK/System+Architecture
https://cwiki.apache.org/confluence/display/OPENWHISK/System+Architecture
https://cwiki.apache.org/confluence/display/OPENWHISK/System+Architecture
https://github.com/ewasm
https://github.com/ewasm
https://wiki.polkadot.network/docs/learn-wasm
https://wiki.polkadot.network/docs/learn-wasm

Chris Colen, FukangWen, Catherine Leung, Siyuan
Wang, Leon Zaruvinsky, Mateo Espinosa, Rick
Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An Open-Source Benchmark Suite
for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 3-18, Providence, Rhode Island, April 2019.

[21] Jim Gray, Pat Helland, Patrick E. O’Neil, and
Dennis E. Shasha. The Dangers of Replication
and a Solution. SIGMOD International Conference
on Management of Data, pages 173-182, Montréal,
Canada, June 1996.

[22] W3 WebAssembly Working Group. WebAssembly
Specification. https://webassembly.org/
specs/ (Last Accessed March 2022).

[23] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gon-
zalez, Johann Schleier-Smith, Vikram Sreekanti,
Alexey Tumanov, and Chenggang Wu. Serverless
Computing: One Step Forward, Two Steps Back.
9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings, 2019.

[24] Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi.
Understanding Ephemeral Storage for Serverless
Analytics. USENIX Annual Technical Conference,
pages 789-794, Boston, Massachusetts, July 2018.

[25] Peter Kraft, Qian Li, Kostis Kaffes, Athinagoras
Skiadopoulos, Deeptaanshu Kumar, Danny Cho,
Jason Li, Robert Redmond, Nathan W. Weckwerth,
Brian S. Xia, Peter Bailis, Michael J. Cafarella,
Goetz Graefe, Jeremy Kepner, Christos Kozyrakis,
Michael Stonebraker, Lalith Suresh, Xiangyao
Yu, and Matei Zaharia. Apiary: A DBMS-Backed
Transactional Function-as-a-Service Framework.
CoRR, abs/2208.13068, 2022.

[26] Leslie Lamport, Robert E. Shostak, and Marshall
C. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and
Systems, 4(3):382-401, 1982.

[27] Marketsandmarkets Private Ltd. Server-
less Architecture Market. https://www.
marketsandmarkets.com/Market-
Reports/serverless-architecture-
market-64917099.htm (Last Accessed May
2023).

[28] Microsoft, Inc. Azure Functions error handling
and retries. https://learn.microsoft.
com/en-us/azure/azure-functions/
functions-bindings-error-pages (Last
Accessed March 2024).

[29] MongoDB, Inc. Handle Errors in Functions. https:
//www.mongodb.com/docs/atlas/app-
services/functions/handle-errors
(Last Accessed March 2024).

[30] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. SOCK: Rapid Task
Provisioning with Serverless-Optimized Contain-
ers. USENIX Annual Technical Conference, pages
57-70, Boston, Massachusetts, July 2018.

[31] Pandian Raju, Rohan Kadekodi, Vijay Chi-
dambaram, and Ittai Abraham. PebblesDB:
Building Key-Value Stores using Fragmented Log-
Structured Merge Trees. Symposium on Operating
Systems Principles, pages 497-514, Shanghai, China,
October 2017.

[32] Redis. Kubernetes Documentation. https:
//kubernetes.io/docs/home/ (Last Ac-
cessed January 2023).

[33] Redis. Retwis Documentation. https://redis.
io/docs/reference/patterns/twitter-
clone/ (Last Accessed March 2022).

[34] Jerome H. Saltzer, David P. Reed, and David
D. Clark. End-To-End Arguments in System
Design. ACM Transactions on Computer Systems,
2(4):277-288, 1984.

[35] Amazon Web Services. AWS Lambda.
https://aws.amazon.com/lambda/
(Last Accessed March 2022).

[36] Mohammad Shahrad, Rodrigo Fonseca, Iñigo
Goiri, Gohar Irfan Chaudhry, Paul Batum, Jason
Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless
in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider.
USENIXAnnual Technical Conference, pages 205-218,
Virtual, Anywhere, July 2020.

[37] Simon Shillaker and Peter R. Pietzuch. Faasm:
Lightweight Isolation for Efficient Stateful Server-
less Computing. USENIX Annual Technical Confer-
ence, pages 419-433, Virtual, Anywhere, July 2020.

15

https://webassembly.org/specs/
https://webassembly.org/specs/
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.htm
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.htm
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.htm
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.htm
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://www.mongodb.com/docs/atlas/app-services/functions/handle-errors
https://www.mongodb.com/docs/atlas/app-services/functions/handle-errors
https://www.mongodb.com/docs/atlas/app-services/functions/handle-errors
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://redis.io/docs/reference/patterns/twitter-clone/
https://redis.io/docs/reference/patterns/twitter-clone/
https://redis.io/docs/reference/patterns/twitter-clone/
https://aws.amazon.com/lambda/

[38] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions
in multicore in-memory databases. Symposium
on Operating Systems Principles, pages 18-32,
Farmington, Pennsylvania, November 2013.

[39] Haoran Zhang, Adney Cardoza, Peter Baile Chen,
Sebastian Angel, and Vincent Liu. Fault-tolerant
and transactional stateful serverless workflows.
Symposium on Operating System Design and Im-
plementation, pages 1187-1204, Banff, Canada,
November 2020.

[40] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the gap between serverless and its state
with storage functions. Proceedings of the ACM
Symposium on Cloud Computing, pages 1–12, 2019.

16

	Introduction
	Background and Motivation
	Conventional Serverless
	The Missing Pieces

	The LambdaObject Abstraction
	Data Model
	Objects
	Applications
	Object Entries

	Execution Model
	Function Calls
	Transactions

	Example Application

	LambdaStore
	System Architecture
	The Coordinating Service
	Nodes and Replica Sets
	Clients and Frontends

	Virtualization Layer
	Metering

	Dynamic Object Granularity
	Entry Sets
	Entry Set Partitioning

	Sharding Applications
	Serverless Transactions
	Multi-Shard Transactions
	Delegated Transactions
	Concurrency Control Protocol
	Fault Tolerance

	Preliminary Evaluation
	Experimental Setup
	Microbenchmarks
	Disaggregation and Coordination Overheads
	Throughput and Latency

	Application Performance

	Conclusion

